BCH and Goppa-type binary linear sum-rank-metric codes

This page lists some tables that provide the dimensions of binary linear sum-rank-metric codes constructed from two BCH codes and two Goppa codes over GF(4), respectively. For the constructions of SRM codes, we refer to the following references.

  1. U. MartÍnez-Peňas, Sum-rank BCH codes and cyclic-skew-cyclic codes, IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 51495167, 2021.

  2. H. Chen, New explicit linear sum-rank-metric codes, IEEE Transactions on Information Theory, vol. 69, no. 10, pp. 6303-6313, 2023.

  3. H. Chen, Z. Cheng and Y. Qi, Construction and fast decoding of binary linear sum-rank-metric codes, arXiv:2311.03619, 2023.

1. The dimensions of BCH-type binary linear sum-rank-metric codes with matrix size n*m

Table 1: Block length t=15, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table IV)
Singleton-like

4

2*24

2*20

2*27

5

2*21

2*18

2*26

6

2*20

2*16

2*25

7

2*17

2*14

2*24

8

2*15

2*10

2*23

9

2*13

2*8

2*22

10

2*13

2*8

2*21

11

2*11

2*6

2*20

12

2*10

2*4

2*19

13

2*8

2*2

2*18

14

2*8

2*2

2*17

15

2*6

2*2

2*16

Table 2: Block length t=31, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table V)
Singleton-like

4

2*55

2*50

2*59

5

2*47

2*47

2*58

6

2*46

2*45

2*57

7

2*41

2*40

2*56

8

2*40

2*35

2*55

9

2*32

2*32

2*54

10

2*32

2*30

2*53

11

2*31

2*27

2*52

12

2*30

2*25

2*51

13

2*22

2*22

2*50

14

2*22

2*20

2*49

15

2*21

2*15

2*48

18

2*12

2*10

2*45

22

2*12

2*7

2*41

26

2*7

2*2

2*37

30

2*7

2*2

2*33

Table 3: Block length t=63, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table VI)
Singleton-like

4

2*118

2*112

2*123

5

2*113

2*108

2*122

6

2*112

2*106

2*121

7

2*106

2*100

2*120

8

2*103

2*94

2*119

9

2*99

2*90

2*118

10

2*98

2*88

2*117

11

2*94

2*82

2*116

12

2*91

2*76

2*115

13

2*86

2*72

2*114

14

2*85

2*70

2*113

15

2*79

2*64

2*112

16

2*76

2*58

2*111

17

2*72

2*54

2*110

18

2*72

2*54

2*109

19

2*71

2*54

2*108

20

2*71

2*54

2*107

21

2*68

2*54

2*106

22

2*67

2*52

2*105

23

2*63

2*50

2*104

24

2*60

2*44

2*103

25

2*56

2*40

2*102

26

2*56

2*40

2*101

27

2*54

2*38

2*100

28

2*51

2*32

2*99

29

2*46

2*28

2*98

30

2*46

2*28

2*97

31

2*42

2*26

2*96

32

2*39

2*20

2*95

38

2*35

2*16

2*89

46

2*29

2*8

2*81

54

2*20

2*2

2*73

Table 4: Block length t=127, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table VII)
Singleton-like

4

2*245

2*238

2*251

5

2*233

2*233

2*250

6

2*232

2*231

2*249

7

2*225

2*224

2*248

8

2*224

2*217

2*247

9

2*212

2*212

2*246

10

2*211

2*210

2*245

11

2*204

2*203

2*244

12

2*203

2*196

2*243

13

2*191

2*191

2*242

14

2*190

2*189

2*241

15

2*183

2*182

2*240

16

2*182

2*175

2*239

19

2*169

2*163

2*236

20

2*168

2*161

2*235

22

2*155

2*154

2*233

27

2*134

2*126

2*228

28

2*133

2*119

2*227

30

2*120

2*112

2*225

38

2*100

2*91

2*217

40

2*99

2*84

2*215

46

2*79

2*70

2*209

54

2*65

2*44

2*201

60

2*50

2*35

2*195

62

2*44

2*28

2*193

76

2*30

2*9

2*179

80

2*30

2*9

2*175

92

2*23

2*9

2*163

108

2*16

2*2

2*147

120

2*9

2*2

2*135

124

2*9

2*2

2*131

126

2*9

2*2

2*129

Table 5: Block length t=255, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Theorem 9)
Singleton-like

4

2*500

2*492

2*507

5

2*493

2*486

2*506

6

2*492

2*484

2*505

7

2*484

2*476

2*504

8

2*480

2*468

2*503

9

2*474

2*462

2*502

10

2*473

2*460

2*501

11

2*468

2*452

2*500

12

2*464

2*444

2*499

15

2*448

2*428

2*496

16

2*444

2*420

2*495

17

2*438

2*414

2*494

18

2*437

2*412

2*493

30

2*386

2*344

2*481

31

2*378

2*336

2*480

32

2*374

2*328

2*479

33

2*369

2*324

2*478

34

2*369

2*324

2*477

35

2*366

2*320

2*476

36

2*364

2*316

2*475

60

2*268

2*192

2*451

64

2*248

2*168

2*447

68

2*244

2*164

2*443

72

2*239

2*162

2*439

100

2*176

2*112

2*411

119

2*131

2*68

2*392

120

2*129

2*66

2*391

128

2*103

2*38

2*383

136

2*99

2*34

2*375

144

2*97

2*32

2*367

199

2*58

2*4

2*312

200

2*58

2*4

2*311

238

2*36

2*2

2*273

239

2*34

2*2

2*272

240

2*34

2*2

2*271

Table 6: Block length t=511, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Theorem 9)
Singleton-like

4

2*1011

2*1002

2*1019

5

2*995

2*995

2*1018

6

2*994

2*993

2*1017

7

2*985

2*984

2*1016

8

2*984

2*975

2*1015

9

2*968

2*968

2*1014

10

2*967

2*966

2*1013

11

2*958

2*957

2*1012

12

2*957

2*948

2*1011

32

2*822

2*813

2*991

36

2*804

2*795

2*987

60

2*651

2*633

2*963

80

2*567

2*537

2*943

100

2*461

2*438

2*923

120

2*378

2*330

2*903

140

2*317

2*269

2*883

160

2*295

2*231

2*863

180

2*242

2*186

2*843

200

2*188

2*125

2*823

220

2*168

2*105

2*803

240

2*129

2*63

2*783

260

2*77

2*11

2*763

280

2*77

2*11

2*743

300

2*77

2*11

2*723

320

2*77

2*11

2*703

340

2*77

2*11

2*683

360

2*59

2*11

2*663

380

2*41

2*11

2*643

400

2*32

2*2

2*623

420

2*32

2*2

2*603

440

2*31

2*2

2*583

460

2*20

2*2

2*563

480

2*19

2*2

2*543

500

2*11

2*2

2*523

For decoding of BCH-type binary linear sum-rank-metric codes , the following binary linear sum-rank-metric codes with the block length 15, 63 ,255, and matrix size 2*2, are constructed from quaternary BCH [t, k_i, d_i] codes, satisfying d_2>=2d_1/3.

Table 7: Block length t=15, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table IV)
Singleton-like

4

2*22

2*20

2*27

5

2*19

2*18

2*26

6

2*18

2*16

2*25

7

2*16

2*14

2*24

8

2*13

2*10

2*23

9

2*12

2*8

2*22

10

2*11

2*8

2*21

11

2*8

2*6

2*20

12

2*7

2*4

2*19

13

2*5

2*2

2*18

14

2*5

2*2

2*17

15

2*5

2*2

2*16

Table 8: Block length t=63, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Table VI)
Singleton-like

4

2*115

2*112

2*123

5

2*110

2*108

2*122

6

2*109

2*106

2*121

7

2*104

2*100

2*120

8

2*100

2*94

2*119

9

2*98

2*90

2*118

10

2*94

2*88

2*117

11

2*88

2*82

2*116

12

2*85

2*76

2*115

13

2*81

2*72

2*114

14

2*79

2*70

2*113

20

2*62

2*54

2*107

22

2*58

2*52

2*105

24

2*51

2*44

2*103

28

2*43

2*32

2*99

30

2*41

2*28

2*97

38

2*28

2*16

2*89

46

2*17

2*8

2*81

54

2*9

2*2

2*73

60

2*9

2*2

2*67

Table 9: Block length t=255, q=2, n=m=2

Minimum sum-rank distance
Reference 3
Reference 1 (Theorem 9)
Singleton-like

4

2*496

2*492

2*507

5

2*489

2*486

2*506

6

2*488

2*484

2*505

7

2*481

2*476

2*504

8

2*476

2*468

2*503

9

2*473

2*462

2*502

10

2*468

2*460

2*501

11

2*460

2*452

2*500

12

2*456

2*444

2*499

15

2*444

2*428

2*496

16

2*436

2*420

2*495

17

2*429

2*414

2*494

18

2*428

2*412

2*493

30

2*372

2*344

2*481

31

2*365

2*336

2*480

32

2*360

2*328

2*479

33

2*358

2*324

2*478

34

2*354

2*324

2*477

35

2*348

2*320

2*476

36

2*346

2*316

2*475

60

2*242

2*192

2*451

64

2*222

2*168

2*447

68

2*212

2*164

2*443

72

2*203

2*162

2*439

100

2*138

2*112

2*411

119

2*116

2*68

2*392

120

2*114

2*66

2*391

128

2*99

2*38

2*383

136

2*88

2*34

2*375

144

2*75

2*32

2*367

199

2*19

2*4

2*312

200

2*19

2*4

2*311

238

2*17

2*2

2*273

239

2*17

2*2

2*272

240

2*17

2*2

2*271

2. The dimensions of Goppa type binary linear sum-rank-metric codes with matrix size n*m

Table 10: Block length t, q=2, n=m=2

t
Minimum sum-rank distance
Reference 3
Reference 1 (Tables)
Singleton-like

32

5

2*49

t=31, dim=2*47

2*60

32

18

2*12

t=31, dim=2*7

2*47

32

22

2*7

t=31, dim=2*7

2*43

32

26

2*2

t=31, dim=2*2

2*39

64

5

2*110

t=63, dim=2*108

2*124

128

5

2*235

t=127, dim=2*233

2*252

Last updated